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Conjugate gradient filtering of instantaneous normal modes, saddles on the energy landscape,
and diffusion in liquids
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~Received 2 March 2001; revised manuscript received 12 July 2001; published 18 January 2002!

Instantaneous normal modes~INM’s ! are calculated during a conjugate-gradient~CG! descent of the poten-
tial energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number
(;4) of CG steps removes all the Im2v modes in the crystal and leaves the liquid withdiffusive Im2v
which accurately represent the self-diffusion constantD. Conjugate gradient filteringappears to be a promising
method, applicable to any system, of obtaining diffusive modes and facilitating INM theory ofD. The relation
of the CG-step dependent INM quantities to the landscape and its saddles is discussed.
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I. INTRODUCTION

For some time@1,2# we have been pursuing the idea th
the self-diffusion constantD can be expressed in terms of th
imaginary-frequency instantaneous normal modes~INMs!;
we are particularly interested in supercooled liquids. T
INMs are the eigenvectors of the Hessian matrix of sec
derivatives of the potential energyU with respect to the mas
weighted coordinates for a typical equilibrium configuratio
The frequenciesva are the square roots of the eigenvalu
Because a liquid configuration is not a minimum ofU, eigen-
directions exist with downward curvature, yielding negati
eigenvalues and imaginary frequencies. Im2v modes are
also called unstable~u! and the fraction~out of all 3N
modes! of unstable modes isf u .

Our approach is best discussed in terms of the topolog
the potential energy surface in the configuration space,
@3,4# landscape. Stillinger and Weber showed@5# how to
partition the landscape into the basins of the local minima
inherent structures~ISs!; a configuration is mapped to th
basin to which it will drain via steepest descent minimiz
tion. For the~low! T of interest here the same results a
obtained with the more efficient conjugate-gradient~CG! al-
gorithm. Diffusion requires@3# that the system move amon
the basins via saddle barriers, which exhibit@6# Im2v. At
high T such motion is unconstrained. Below a crossover te
perature, often identified with the@7# mode-coupling tem-
peratureTc , inherent structure transitionsbecome more dif-
ficult. The reasons for the crossover are still being deba
activation and the distribution of barrier heights play a k
role but nonactivated dynamics along low-barrier pathw
is also possible~entropic transport! at low T. A landscape
approach based on saddles@8–10# instead of minima natu-
rally includes nonactivated saddle-to-saddle pathways ab
Tc . In any case, paths with downward curvature ofU are
followed and it is plausible thatf u reflects the extent of IS
transitions, or of saddle transitions, and thenceD. We have
given @1,6# landscape-based derivations of this relation,
beit with many approximations; the most recent argume
invoke @2# a random energy model. The upshot is that
dynamicalquantityD is expressed in terms of astatic, equi-
librium average quantityf u , meeting one of the fundamenta
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goals of nonequilibrium statistical mechanics and open
the door to new theories and algorithms based upon, e
intelligent sampling.

In 1993 we found@6# that Im2v persist in the crystal
whereD'0. This has led to several attempts to isolatedif-
fusivemodes, discarding the effects of anharmonicities a
two-level systems which produce Im2v but do not contrib-
ute toD. One approach is@11# to classify the modes accord
ing to their one dimensional potential energy profilesU(q),
obtained by moving the system along the eigenfuncti
There are two types of Im2v profiles, double wells~DWs!
and those with anharmonic shoulders~SHs! in a global single
well. DWs and SHs are obvious candidates for diffusi
modes and nondiffusive anharmonicities, respectively. T
method is somewhat uncertain because the eigenfunctio
only calculated once and loses its physical significance a
a small displacement. In waterD; f dw is @12,13# obeyed
very well. OrdinarilyTc is estimated by fittingD(T) to the
mode-coupling@7# form D5c(T2Tc)

b; it is the temperature
at whichD extrapolates to zero from above, using a carefu
chosenT range. Sciortino and Tartaglia@12# showed that
INM could be used to obtainTc , i.e., f dw(T) also extrapo-
lates to zero atTc . More evidence for the relation betwee
f dw(T) and Tc was provided by La Naveet al. @13#. It is
significant that the static averagef dw(T) yields the dynami-
cal Tc .

The DW description is not so successful in other mater
but an extension which accounts for the IS visited along
DW directions@14# looks promising. Recognizing that rota
tional anharmonicities dominate the Im2v in CS2 we @15#
introducedpure translation ~TR! modes of the center-of
mass Hessian, obtaining a superb description of diffus
The relationD5 f tr^vu

tr&, is accurate to within the error in
the simulation for 56 supercooled states with a range
134X in D. The basic INM theory of diffusion is also furthe
refined in the second article of Ref.@15#.

II. CONJUGATE GRADIENT FILTERING

A unified route to diffusive modes is required. Here w
present the method ofconjugate gradient filtering, illustrated
for the unit-density Lennard-Jones~LJ! liquid but easily ap-
©2002 The American Physical Society25-1
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plicable to other systems. Simulations are performed w
N5108 atoms for 0.4<T<2.0 ~LJ units!. The crystal melts
at T'1.75. Solidification of the supercooled liquid is fre
quent at the lowerT with N5108 and when it occurs, we
simply terminate the run.

Starting with a representative configuration, a CG mi
mization @16# is initiated and the INMs are calculated as
function of the numbern of CG steps taken, giving rise to
family of unstable fractionsf u(n,T). The significant obser-
vation is that, while~nondiffusive! Im2v are present in the
finite-T crystal, they vanish@Fig. 1~a!# very quickly with n,
being almost completely eliminated after four CG steps.
contrast@Fig. 1~b!#, in the supercooled state, following a
initial sharp drop, Im2v persist, even at the lowestT, for
tens of steps. If nondiffusive Im2v in the liquid are any-
thing like those in the crystal it is clearly suggested that th
are eliminated by the first few steps and one should see
relation betweenD and f u(n), n'4. The fractionsf dw(n),
f sh(n), and the potential̂U(n)& and its gradient̂ u¹U(n)u&
exhibit similar trends, the last two indicating that the fir
few steps bring the system down a steep landscape.

Figure 2 showsf u(n,T), n50 – 6, for the supercooled
liquid. The value ofn employed to representD must include
the sharp drop in nondiffusive Im2v but avoid largern
where diffusive modes are removed as well. Of course
method should not be based upon an arbitrary choice ofn. A
simple, systematic procedure is to fit then dependence o
f u(n) for the supercooled states to a double exponen
f u(n)5 f f* exp(2kf*n)1fdif*exp(2kdif*n), to account for
fast ~f! nondiffusive and slow diffusive decay withn. The
coefficient f di f represents the fraction of diffusive Im2v.
Figure 2 includesf di f(T) for comparision withf u(n,T), and
it is seen to lie betweenf u(3) and f u(4), confirming that
most of the nondiffusive, and few of the diffusive, Im2v are

FIG. 1. The fraction of imaginary frequency modes vs the nu
bern of CG steps for~a! the crystal (T 5 0.4, 0.8, 1.2, 1.6, 1.7, and
1.75! and ~b! the supercooled liquid (T 5 0.4, 0.8, 1.2, 1.6, and
2.0!, with T increasing from bottom to top. Some data are n
shown to avoid congestion.
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eliminated by four CG steps.We regard fdi f(T) as the fun-
damental INM-derived indicator of diffusion; it is obtained
with the recipe that is applicable to any potential or stepw
minimization algorithm. In the following,f u(4,T) is dis-
cussed only because it is, for this system, an excellent
proximation tof di f(T) which is not subject to the additiona
numerical uncertainties of a fit.

One way to test the proposed relation betweenD and
filtered INMs is @12,13# by calculation ofTc . Fitting D(T)
in the range 0.6<T<2.0 givesTc50.48. The estimatedTc is
sensitive to the range ofT employed, which must be chose
so Tc is the temperature at whichD would vanish via ex-
trapolation of the higher-T mechanism. Iff u(n) represents
diffusion, it too should yield Tc . Fitting f u(n)5c@T
2Tc

inm(n)#b(n) for the sameT range, we find thatTc
inm(n)

increases withn ~Fig. 3, inset! as nondiffusive modes ar
eliminated. Then dependence is well fit toTc

inm(n)50.41
10.06* @12exp(20.52* n)#, with Tc

inm(n→`)50.47
'Tc . Results which are essentially identical are obtain
from f di f , Tc

di f50.46, and from four steps,Tc
inm(4)50.47.

Of course enough CG steps will remove all the Im2v and
lead to nonsense.

For an INM expression ofD(T) over a wideT range the
appropriate relation is betweenf u and the velocity correla-

-

t

FIG. 2. T dependence off u(n) for n 5 0–6 ~top to bottom!, of
the fraction f di f of Im2v left after the fast drop in the double
exponential fit~upper bold line!, and of the average fraction o
unstable directions at the critical point,^k& ~lower bold line!.

FIG. 3. Comparison ofD/T ~1!, 0.34 f di f (s), 0.375f u(4)
(3) ~liquid and crystal! and 0.44̂k& (h). Inset is the CG step
number dependence ofTc

inm(n).
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CONJUGATE GRADIENT FILTERING OF . . . PHYSICAL REVIEW E 65 026125
tion time D/T, since they both reach constant values at h
T and constant density. Comparison ofD/T with f di f(T) and
f u(4,T) for 0.4<T<2.0 is given in Fig. 3. Filtering the Im
2v with four CG steps and no ‘‘fine tuning’’ yields an ex
cellent INM representation of diffusion for allT; f di f(T) and
f u(4,T) are indistinguishable. This method is not very sen
tive to the choice ofn, and good proportionality off u(n) to
D exists for n53, 5, and 6 as well. Not only isD well
described, the melting transition as indicated by the filte
INM is sharp unlike the usual@6# INM description.

III. INM’S AND SADDLES

A few CG steps bring the system towards the lower
ergy part of the landscape and remove most of the nond
sive modes. Further insight into the utility of CG filterin
may be gained with a landscape-based understanding o
minimization algorithm. The minima are extrema orcritical
points ~CPs! of zero order, but the higher-order CPs, t
saddle barriers, are of interest also@2,8–10#. The minima are
the lowest-lying CPs, and@2,6,8–10# the energy increase
with the orderK, the number of Im2v. For T.Tc @8–10#
the system is closer to a saddle than to a minimum. Then
the method of steepest descent,^U(n)& exhibits@17# a rapid
drop at smalln, an intermediate plateau, and ultimately fa
to the constant valueUis .

The rapid drop arises from degrees of freedom with la
gradients. From the INM point of view these are the hi
Re2v modes or Im2v caused by bumps or other roughne
on the landscape. We believe the latter are the nondiffu
modes eliminated by filtering. On the other hand, areaction
coordinatein the vicinity of a saddle barrier, the prime ca
didate for a diffusive mode, has a small gradient and an
2v that persists for many minimization steps. The platea
found when the large-gradient degrees of freedom have b
minimized but little motion has yet occurred along the re
tion coordinates. The system should be closest to a sa
after the first several steps, the number of steps for maxim
proximity being dependent on the initial gradient and cur
ture along the available degrees of freedom. Since the a
rithm is searching for a minimum it will not visit the finite
order CP adjoining a high-T configuration, and after tens o
hundreds of steps it finds the IS. For the CG algorithm,
expect the same trend although the choice of conjugate
rections, as opposed to the direction of the gradient, wil
general keep the system farther away from the CPs.

These ideas may be implemented explicitly by noting t
the CPs@18# are minima of the squared gradientW5u¹Uu2.
We have minimizedW in liquid configurations from our MD
runs, determining the associated CP, denotedr c . Thesaddle
mapping@8–10# is an extension of the IS mapping which
appealing atT.Tc . AboveTc the system maps@8–10# to a
finite-order CP, belowT.Tc , to the IS. ThusTc may be
estimated@8–10# by extrapolation of^K& to zero from
above. The potential energy of a supercooled liquid exce
that of the associated CP—of any order—because mos
the displacement away from the CP is along stable direct
of upward curvature. During minimization ofU at T.Tc the
configurationr (n) passes by the associated CP of nonz
02612
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order while falling towards the IS. The distancedr c(n)
5A(1/N)ur (n)2r cu2 then reaches a minimum at intermed
ate n. Below Tc , the IS andr c are identical anddr c(n)
decays to zero monatonically.

Figure 4 showsdr c(n) for T50.5, 0.6, 0.8, 1.2, 1.6, and
2.0 averaged over 20 independent configurations. At h
T (T.0.9), the magnitudes ofu¹Uu, ^vs&, and ^vu& are
large, causing rapid approach to the reaction coordinate
associated CP. In this case four steps bring the system clo
to the CP. With decreasingT, the gradient and curvature o
the landscape decreases. As a result, even though a ch
around the reaction coordinate is reached in about four st
more are required for the closest approach to the CP, du
the slow quenching of small-gradient degrees of freedo
Similarly, the distance of the system from the CP decrea
as measured both from the instantaneous configuration
from the reaction coordinate during minimization.

The configurationsr (n) arising in minimization ofU map
to an n-dependent CP, and after a few steps a CP differ
from that obtained from the original configuration is foun
The order of the CP to whichr (n) maps decreases withn, a
feature that should show up in processes that lead the sy
down the energy landscape, as in aging dynamics of gla
@19#.

The energy of a snapshot configuration always lies ab
that of the CP. Thus during minimization ofU the system
energy crosses the energy of a nonzero-order CP at thn,
denotednx , which minimizesdr c(n); U(nx);UCP . Since
the average number of Im2v appears to be governed byU
@6,8–10#, there should be a relation betweenf u(nx) and the
averaged fraction of unstable directions at the CP,^k& (k
5K/3N). Figure 2 includeŝk(T)& along with thef u(n) for
n50 –6 vsT. Indeed, at theT wherenx;4, f u(4 –5) and
^k& are almost identical and̂k& must representD/T. A rela-
tion between̂ k& andD is of course implicit in the estimate
@8–10# of Tc from ^k&. In Fig. 3, 0.44 timeŝk(T)& is plotted
along with D/T, with excellent agreement at the higherT.
Fitting ^k(T)& givesTc

k50.47, almost identical to the result
obtained fromD(T) and filtered INM’s.

As T→Tc , ^k& falls below f u(4), andthus @sinceD/T
; f di f' f u(4) at all T# fails to capture theT dependence of
D/T. What then is the suitability of usinĝk& as an indicator

FIG. 4. Distance of the configuration aftern CG steps from the
critical point as a function ofn, for T 5 0.5, 0.6, 0.8, 1.2, 1.6, and
2.0 (T increasing bottom to top!.
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of diffusion? We believe that, for this particular system, fo
CG steps bring the system near the reaction coordinate in
vicinity of, and higher in energy than, the CP. The addition
Im2v found at the higher energy represent legitimate dif
sive directions which must be counted, and^k& is not a good
indicator of diffusion forT<Tc . For the same reasons,
yields an excellent value forTc itself.

IV. DISCUSSION

In a smoothly varying one-dimensional landscape of b
riers and minima with a single lengthscale@e.g., sin(x)#, f u is
simply the probability that the system is above the inflect
points, and is obviously related toD. The connection is no
straightforward, however, on the 3N dimensional, multi-
scale, rough landscape of a liquid. CG filtering works
bringing the system away from regions of nondiffusive
2v by ‘‘riding’’ the associated large gradients. AtT.Tc
proximity to the physically relevant saddle barriers resu
To a large extent the one-dimensional simplicity of interp
tation is restored in the subsequent INM calculation.

Our proposal is that the fraction of ‘‘diffusive’’ Im2v
may be obtained asf di f , the coefficient of the slow decay i
a biexponential fit tof u(n). In unit-density LJf di f and f u(4)
F

nd
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are almost indistinguishable. Excellent representations
D(T) and Tc are obtained with either in the supercoole
liquid, andD'0 is recovered in the crystal. In general the
is nothing special aboutn54. If use of another algorithm
with another liquid led to a fast decay lasting, e.g., sev
steps, presumablyf di f would be close tof u(7).

Removing the large gradients and bringing the syst
through the region of fastest change indr c(n) prior to the
INM calculation is the essential operation in obtaining
good representation ofD. This corresponds to introducin
the average fraction̂k& of Im2v of the associated saddle a
higher supercooledT, but ^k& underestimatesD at T<Tc .
The method may be applied to any potential and we will t
it for molecular and ionic liquids in future work, seeking a
INM theory of D based upon a unified prescription for di
fusive modes related to the reaction coordinates for dif
sion.
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